15.09.2024, 11:44 AM
Während Alfsch noch ein Loch in die Dose bohrt und Alufolie flachklopft, kann ich ja mal wieder was "importieren".
Die spezielle Relativitätstheorie (SRT) hat was mit verschieden schnell bewegten Systemen zu tun und wie sich Strecken, Zeiten, Geschwindigkeiten und letztlich das Licht verhalten, wenn man von einem System in das andere System guckt.
Aber in Wirklichkeit ist das nur der Vorspann. Denn in der Hauptsache ging es Einstein um die Anpassung der Maxwellgleichungen. Was sehen Elektronen, wenn sie sich im Kabel bewegen? Magnetismus ist demnach eine Scheinkraft. Diese 120 Jahre alte Erkenntnis wurde lange unterbewertet und dringt erst langsam in die Lehrbücher ein.
Der Vorspann aber ist völlig überbewertet. Gefühlte 30% der Vixra-Paper befassen sich damit und erkennen irgendwelche Fehler (natürlich immer bei Einstein und nie bei sich selbst).
Mittlerweile kann ich den Kern des ersten Teils der SRT mathematikfrei auf den Punkt bringen. Ich zeig das mal am Beispiel eines Kommentars unter einem China-Paper:
Hello Yake Li,
I consider this sentence (Anm: in seinem Paper) to be central:
Your error is the small word "is". Correct would be: “seems”.
Please consider the following sketches:
In fig.1 you can see the circular solar disk, which we observe with a crosshair from a helicopter hovering above the sun.
In fig.2, two photons were launched simultaneously in the center of the solar disk. One photon is flying north. The other to the east.
In fig.3 they continue their flight.
And in fig.4 both reach the edge of the solar disk at the same time.
------------
Now let's look at the same experiment from Earth. Through a static telescope with crosshairs. As we are moving relative to the sun, the solar disk will slowly move to the right during the experiment.
Fig. 5 coincides with fig. 1. The experiment begins.
In Fig 6, two photons start again. One to the north. And one to the east. In addition, the solar disk and the flying photons move a little to the right.
In Fig. 7, the photons continue to fly. And the solar disk with their photons also moves a little further to the right.
In Fig. 8, both photons reach the edge of the solar disk, because nothing has changed in the physics on the sun. But what do we see in the telescope? In fact, it appears that the northern photon has traveled a shorter distance. I have shown this apparently shorter path as a dashed line. And it will still appear to us that the northern photon has reached the edge of the solar disk somewhat earlier than the eastern photon.
*********
The small sketch proves to you that an observer moving relative to the sun sees a distorted reality. Some photons in the Sun's reference frame seems slower from the Earth. It's like putting on the wrong glasses.
However, the wrong glasses on the observers nose does not change reality on the sun. If he put on the right glasses (Lorentz transformation), then he see the same thing as in fig.1 to fig.4.
And with the right glasses, an observer can also see what to make of your paper....
Best regards
Wolfgang
Die spezielle Relativitätstheorie (SRT) hat was mit verschieden schnell bewegten Systemen zu tun und wie sich Strecken, Zeiten, Geschwindigkeiten und letztlich das Licht verhalten, wenn man von einem System in das andere System guckt.
Aber in Wirklichkeit ist das nur der Vorspann. Denn in der Hauptsache ging es Einstein um die Anpassung der Maxwellgleichungen. Was sehen Elektronen, wenn sie sich im Kabel bewegen? Magnetismus ist demnach eine Scheinkraft. Diese 120 Jahre alte Erkenntnis wurde lange unterbewertet und dringt erst langsam in die Lehrbücher ein.
Der Vorspann aber ist völlig überbewertet. Gefühlte 30% der Vixra-Paper befassen sich damit und erkennen irgendwelche Fehler (natürlich immer bei Einstein und nie bei sich selbst).
Mittlerweile kann ich den Kern des ersten Teils der SRT mathematikfrei auf den Punkt bringen. Ich zeig das mal am Beispiel eines Kommentars unter einem China-Paper:
Hello Yake Li,
I consider this sentence (Anm: in seinem Paper) to be central:
Zitat:...when measuring the speed of light in the Sun's reference frame from the Earth's reference frame, it is observed that the speed of light in the Sun's reference frame is slower relative to the speed of light in the Earth's reference frame, which is also a widely accepted observational result.
Your error is the small word "is". Correct would be: “seems”.
Please consider the following sketches:
In fig.1 you can see the circular solar disk, which we observe with a crosshair from a helicopter hovering above the sun.
In fig.2, two photons were launched simultaneously in the center of the solar disk. One photon is flying north. The other to the east.
In fig.3 they continue their flight.
And in fig.4 both reach the edge of the solar disk at the same time.
------------
Now let's look at the same experiment from Earth. Through a static telescope with crosshairs. As we are moving relative to the sun, the solar disk will slowly move to the right during the experiment.
Fig. 5 coincides with fig. 1. The experiment begins.
In Fig 6, two photons start again. One to the north. And one to the east. In addition, the solar disk and the flying photons move a little to the right.
In Fig. 7, the photons continue to fly. And the solar disk with their photons also moves a little further to the right.
In Fig. 8, both photons reach the edge of the solar disk, because nothing has changed in the physics on the sun. But what do we see in the telescope? In fact, it appears that the northern photon has traveled a shorter distance. I have shown this apparently shorter path as a dashed line. And it will still appear to us that the northern photon has reached the edge of the solar disk somewhat earlier than the eastern photon.
*********
The small sketch proves to you that an observer moving relative to the sun sees a distorted reality. Some photons in the Sun's reference frame seems slower from the Earth. It's like putting on the wrong glasses.
However, the wrong glasses on the observers nose does not change reality on the sun. If he put on the right glasses (Lorentz transformation), then he see the same thing as in fig.1 to fig.4.
And with the right glasses, an observer can also see what to make of your paper....
Best regards
Wolfgang