18.02.2009, 07:50 PM
Hi,
lässt sich das anhängende Modell in LTSpice einfügen und arbeiten? Wenn ja, wie?
Es handelt sich um einen VJFET N-channel
Gruss
Calvin
* model based on measured data (temperature range 25°C-250°C)
* of a typical 1200V JFET mounted in TO220
*
********************************************************************
* content:
* JFET_INF04_1200V_L1
* JFET_INF04_1200V_L3
* JFET_INF04_1200V_L3b
* *******************************************************************
* Example:
*XJFET Drain Gate Source JFET_INF04_1200V_L1
* XJFET Drain Gate Source Tj TCase JFET_INF04_1200V_L3 LossSwitch=1
* XJFET Drain Gate Source Tj TAmb TCase JFET_INF04_1200V_L3b LossSwitch=1
* LossSwitch = 0 -> dissipated power = 0 (default value, can be omitted)
* LossSwitch <> 0 -> dissipated power = Current_JFET x Voltage_JFET
*
*****************************************************************
* thermal nodes of level 3 model:
*
* JFET_INF04_1200V_L3 :
* Tj : potential(in V) = temperature (in °C) at junction (monitor node, typically not connected)
* Tcase : node where the boundary contition - external heat
* sinks etc - have to be connected (ideal heat sink
* can be modeled by using a voltage source stating the
* ambient temperature in °C between Tcase and ground.
*
* JFET_INF04_1200V_L3b :
* Equivalent to L3, usage of thermal nodes TCase and Tamb as in the previos model JFET_Mod_D41_V1.1C
*
* *************************************************************************************************************************************************
.SUBCKT JFET_1200 D G S Tj PARAMS: a=1 LossSwitch=0
.PARAM ISP1A = 9.5038E-2 ISP1B = -2.1720E-4 ISP2A = -2.0088E-3 ISP2B = 6.5673E-6
.PARAM ISP3A = -1.9000E1 ISP3B = 0 KRP1A = 5.1770E-2 KRP1B = 9.4692E-5
.PARAM KRP2A = -1.6794E-3 KRP2B = -2.4340E-7 KRP3A = -1.9000E1 KRP3B = 0
.PARAM f2=130p f1a=17.49p f1b=2767.6p f1c=769.5p f1d=44.27p f3=180p Cmax=900p
.PARAM U0=2.9 ps2={-1/2.5} ps3={-1/12.32} ps4={-1/193.3}
.PARAM ps9={(ln(Cmax/f1b))/ps2}
*
.PARAM Cds0={f2*a}
.PARAM Cox1={f1a}
.PARAM Cox2={Cmax}
.PARAM Cox3={f1c}
.PARAM Cox4={f1d}
.PARAM Cgs={f3*a}
.FUNC KRP1(T) { KRP1A + KRP1B*T }
.FUNC KRP2(T) { KRP2A + KRP2B*T }
.FUNC KRP3(T) { KRP3A + KRP3B*T }
.FUNC ISP1(T) { ISP1A + ISP1B*T }
.FUNC ISP2(T) { ISP2A + ISP2B*T }
.FUNC ISP3(T) { ISP3A + ISP3B*T }
.FUNC KR(T,VG) { (KRP1(T)*(VG-KRP3(T))*(VG-KRP3(T)))+(KRP2(T)*(VG-KRP3(T))*(VG-KRP3(T))*(VG-KRP3(T))) }
.FUNC IS(T,VG) { (ISP1(T)*(VG-ISP3(T))*(VG-ISP3(T)))+(ISP2(T)*(VG-ISP3(T))*(VG-ISP3(T))*(VG-ISP3(T))) }
.FUNC ID(T,VG,VD) {IF( VG>ISP3A,(VD/abs(VD))*IS(T,VG)*(1-exp(-abs(VD)/KR(T,VG))),1e-9 ) }
*JFET current
GIDK d s0 VALUE = {ID(V(Tj,0),V(g,s),V(d,s))}
Vcurr s0 s DC=0
*gate diodes
DA g g1 DGF
DB s g1 DGS
RGS g s 5.65E8
.model DGF D (LEVEL=1 BV=28 RS=0.05)
.model DGS D (LEVEL=1 BV=1.44 RS=70)
E_Eds d edep VALUE {(V(d,s)-2*(SQRT(U0*(limit(U0+V(d,s),0,2000)))-U0))}
C_Cds edep s {Cds0}
Vx d ox1 0
C_Cdg1 ox1 g {Cox1}
E_Edg2 d ox2 VALUE
+ {if(V(d,g)>ps9,V(d,g)-(1/ps2*(exp(ps2*V(d,g))-exp(ps2*min(V(d,g),ps9)))+min(V(d,g),ps9)),0)}
C_Cdg2 ox2 g {Cox2}
E_Edg3 d ox3 VALUE {if(V(d,g)>0,V(d,g)-(exp(ps3*max(V(d,g),0))-1)/ps3,0)}
C_Cdg3 ox3 g {Cox3}
E_Edg4 d ox4 VALUE {if(V(d,g)>0,V(d,g)-(exp(ps4*max(V(d,g),0))-1)/ps4,0)}
C_Cdg4 ox4 g {Cox4}
Cgs g s {Cgs}
*reverse diode (vers. v1.1d)
D1 s0 mid FWDBL1
D2 s0 mid FWDBL2
.MODEL FWDBL1 D RS=0.0 BV=10000
.MODEL FWDBL2 D RS=60k BV=1120
.PARAM RWDA = 1.086
.PARAM RWDB = 0.453
EDIO1 mid miv1 VALUE = {IF(V(s0,mi) > RWDA, RWDA+sqrt(I(VID0)/RWDB)-0.90, 0)}
EDIO2 miv1 miv2 VALUE = {IF(V(s0,mi) <= RWDA, IF(V(s0,mi) > 0, I(VID0)*1e9, 0), 0)}
VID0 miv2 mi 0
VITOT mi d 0
*thermal
G_TH 0 Tj VALUE={ LIMIT(IF(LossSwitch==0,0,abs(I(Vcurr)*(V(d,s))) ),0,1e6)}
.ENDS
*****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L1 drain gate source PARAMS: Ls=1n Ld=1n Lg=5n
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L3 drain gate source Tj Tcase PARAMS: Ls=1n Ld=1n Lg=5n LossSwitch=0
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act} LossSwitch={LossSwitch}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
RTH1 Tj TH1 0.217
RTH2 TH1 TH2 0.430
RTH3 TH2 TH3 0.267
RTH4 TH3 TCase 0.154
CTH1 Tj 0 0.00052
CTH2 TH1 0 0.0042
CTH3 TH2 0 0.029
CTH4 TH3 0 0.239
CTH5 TCase 0 0.239
.ENDS
****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L3b drain gate source Tj Tamb Tcase PARAMS: Ls=1n Ld=1n Lg=5n LossSwitch=0
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act} LossSwitch={LossSwitch}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
RTH1 Tj TH1 0.217
RTH2 TH1 TH2 0.430
RTH3 TH2 TH3 0.267
RTH4 TH3 TCase 0.154
CTH1 Tj Tamb 0.00052
CTH2 TH1 Tamb 0.0042
CTH3 TH2 Tamb 0.029
CTH4 TH3 Tamb 0.239
.ENDS
lässt sich das anhängende Modell in LTSpice einfügen und arbeiten? Wenn ja, wie?
Es handelt sich um einen VJFET N-channel
Gruss
Calvin
* model based on measured data (temperature range 25°C-250°C)
* of a typical 1200V JFET mounted in TO220
*
********************************************************************
* content:
* JFET_INF04_1200V_L1
* JFET_INF04_1200V_L3
* JFET_INF04_1200V_L3b
* *******************************************************************
* Example:
*XJFET Drain Gate Source JFET_INF04_1200V_L1
* XJFET Drain Gate Source Tj TCase JFET_INF04_1200V_L3 LossSwitch=1
* XJFET Drain Gate Source Tj TAmb TCase JFET_INF04_1200V_L3b LossSwitch=1
* LossSwitch = 0 -> dissipated power = 0 (default value, can be omitted)
* LossSwitch <> 0 -> dissipated power = Current_JFET x Voltage_JFET
*
*****************************************************************
* thermal nodes of level 3 model:
*
* JFET_INF04_1200V_L3 :
* Tj : potential(in V) = temperature (in °C) at junction (monitor node, typically not connected)
* Tcase : node where the boundary contition - external heat
* sinks etc - have to be connected (ideal heat sink
* can be modeled by using a voltage source stating the
* ambient temperature in °C between Tcase and ground.
*
* JFET_INF04_1200V_L3b :
* Equivalent to L3, usage of thermal nodes TCase and Tamb as in the previos model JFET_Mod_D41_V1.1C
*
* *************************************************************************************************************************************************
.SUBCKT JFET_1200 D G S Tj PARAMS: a=1 LossSwitch=0
.PARAM ISP1A = 9.5038E-2 ISP1B = -2.1720E-4 ISP2A = -2.0088E-3 ISP2B = 6.5673E-6
.PARAM ISP3A = -1.9000E1 ISP3B = 0 KRP1A = 5.1770E-2 KRP1B = 9.4692E-5
.PARAM KRP2A = -1.6794E-3 KRP2B = -2.4340E-7 KRP3A = -1.9000E1 KRP3B = 0
.PARAM f2=130p f1a=17.49p f1b=2767.6p f1c=769.5p f1d=44.27p f3=180p Cmax=900p
.PARAM U0=2.9 ps2={-1/2.5} ps3={-1/12.32} ps4={-1/193.3}
.PARAM ps9={(ln(Cmax/f1b))/ps2}
*
.PARAM Cds0={f2*a}
.PARAM Cox1={f1a}
.PARAM Cox2={Cmax}
.PARAM Cox3={f1c}
.PARAM Cox4={f1d}
.PARAM Cgs={f3*a}
.FUNC KRP1(T) { KRP1A + KRP1B*T }
.FUNC KRP2(T) { KRP2A + KRP2B*T }
.FUNC KRP3(T) { KRP3A + KRP3B*T }
.FUNC ISP1(T) { ISP1A + ISP1B*T }
.FUNC ISP2(T) { ISP2A + ISP2B*T }
.FUNC ISP3(T) { ISP3A + ISP3B*T }
.FUNC KR(T,VG) { (KRP1(T)*(VG-KRP3(T))*(VG-KRP3(T)))+(KRP2(T)*(VG-KRP3(T))*(VG-KRP3(T))*(VG-KRP3(T))) }
.FUNC IS(T,VG) { (ISP1(T)*(VG-ISP3(T))*(VG-ISP3(T)))+(ISP2(T)*(VG-ISP3(T))*(VG-ISP3(T))*(VG-ISP3(T))) }
.FUNC ID(T,VG,VD) {IF( VG>ISP3A,(VD/abs(VD))*IS(T,VG)*(1-exp(-abs(VD)/KR(T,VG))),1e-9 ) }
*JFET current
GIDK d s0 VALUE = {ID(V(Tj,0),V(g,s),V(d,s))}
Vcurr s0 s DC=0
*gate diodes
DA g g1 DGF
DB s g1 DGS
RGS g s 5.65E8
.model DGF D (LEVEL=1 BV=28 RS=0.05)
.model DGS D (LEVEL=1 BV=1.44 RS=70)
E_Eds d edep VALUE {(V(d,s)-2*(SQRT(U0*(limit(U0+V(d,s),0,2000)))-U0))}
C_Cds edep s {Cds0}
Vx d ox1 0
C_Cdg1 ox1 g {Cox1}
E_Edg2 d ox2 VALUE
+ {if(V(d,g)>ps9,V(d,g)-(1/ps2*(exp(ps2*V(d,g))-exp(ps2*min(V(d,g),ps9)))+min(V(d,g),ps9)),0)}
C_Cdg2 ox2 g {Cox2}
E_Edg3 d ox3 VALUE {if(V(d,g)>0,V(d,g)-(exp(ps3*max(V(d,g),0))-1)/ps3,0)}
C_Cdg3 ox3 g {Cox3}
E_Edg4 d ox4 VALUE {if(V(d,g)>0,V(d,g)-(exp(ps4*max(V(d,g),0))-1)/ps4,0)}
C_Cdg4 ox4 g {Cox4}
Cgs g s {Cgs}
*reverse diode (vers. v1.1d)
D1 s0 mid FWDBL1
D2 s0 mid FWDBL2
.MODEL FWDBL1 D RS=0.0 BV=10000
.MODEL FWDBL2 D RS=60k BV=1120
.PARAM RWDA = 1.086
.PARAM RWDB = 0.453
EDIO1 mid miv1 VALUE = {IF(V(s0,mi) > RWDA, RWDA+sqrt(I(VID0)/RWDB)-0.90, 0)}
EDIO2 miv1 miv2 VALUE = {IF(V(s0,mi) <= RWDA, IF(V(s0,mi) > 0, I(VID0)*1e9, 0), 0)}
VID0 miv2 mi 0
VITOT mi d 0
*thermal
G_TH 0 Tj VALUE={ LIMIT(IF(LossSwitch==0,0,abs(I(Vcurr)*(V(d,s))) ),0,1e6)}
.ENDS
*****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L1 drain gate source PARAMS: Ls=1n Ld=1n Lg=5n
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L3 drain gate source Tj Tcase PARAMS: Ls=1n Ld=1n Lg=5n LossSwitch=0
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act} LossSwitch={LossSwitch}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
RTH1 Tj TH1 0.217
RTH2 TH1 TH2 0.430
RTH3 TH2 TH3 0.267
RTH4 TH3 TCase 0.154
CTH1 Tj 0 0.00052
CTH2 TH1 0 0.0042
CTH3 TH2 0 0.029
CTH4 TH3 0 0.239
CTH5 TCase 0 0.239
.ENDS
****************************************************************************************************
.SUBCKT JFET_INF04_1200V_L3b drain gate source Tj Tamb Tcase PARAMS: Ls=1n Ld=1n Lg=5n LossSwitch=0
.PARAM act=3.39 Rg=14 dgfs=0
X1 d g s Tj JFET_1200 PARAMS: a={act} LossSwitch={LossSwitch}
Rg g1 g {Rg}
Lg gate g1 {Lg*if(dgfs==99,0,1)}
Ls source s {Ls*if(dgfs==99,0,1)}
Ld drain d {Ld*if(dgfs==99,0,1)}
RTH1 Tj TH1 0.217
RTH2 TH1 TH2 0.430
RTH3 TH2 TH3 0.267
RTH4 TH3 TCase 0.154
CTH1 Tj Tamb 0.00052
CTH2 TH1 Tamb 0.0042
CTH3 TH2 Tamb 0.029
CTH4 TH3 Tamb 0.239
.ENDS