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The appendices present a method of calculating the system parameters required to
obtain a desired alignment defined by transfer-function polynomial coefficients in the
presence of enclosure losses together with diaphragm displacement data for that align-
ment, a derivation of the parameter-impedance relationships that permit parameter
evaluation from voice-coil impedance measurements, and a method of evaluating the
amounts of absorption, leakage, and vent losses present in a vented-box loudspeaker

system.

Editor’s Note: Part I of Vented-Box Loudspeaker Systems
appeared in the June issue, Part II in July/August, and
Part 1II in September.

APPENDIX 1
FOURTH-ORDER FILTER FUNCTIONS AND
VENTED-BOX SYSTEM ALIGNMENT

General Expressions

The general form of a prototype low-pass fourth-
order filter function G;(s) normalized to unity in the
passband is

1
Gr(s) = (55)
1+ a;5To + ays?To? + ags® T3 + 51T,4

where T, is the nominal filter time constant and the
coefficients @y, @,, and a3 determine the actual filter
characteristic.

Tables of filter functions normally give only the de-
tails of a low-pass prototype function; the high-pass and
bandpass equivalents are obtained by suitable transforma-
tion. For the high-pass filter function Gy(s), the trans-
formation (retaining the same nominal time constant) is

Gu(sTo) = GL(1/5sTy). (56)
This leads to the general high-pass form of Eq. (20):

54Tt

54T % + 0,53T % + ap52T 2 + agsTy + 1 ’

Gy(s) = (57)

Study of the magnitude-versus-frequency behavior of
filter functions is facilitated by the use of the magnitude-
squared form

|G11(fw)l2 =
wSTOS
(58)
8T + A108T 8 + A0tT ot + A302T 2+ 1
where
A, = a,2—2a,
A2 = a22 + 2 - 2a1a3
A = as?2 —2a,. (59)

Using Eq. (58) it can be shown that the magnitude
response of Gy is down 3 dB, ie., |Gyl2 =15, at a
frequency f; given by

fa/fo = d% (60)
where
fo = 1/(22T,)

and d is the largest positive real root of the equation

(61)

dt— A d3— A,d2— Azd—1 = 0. (62)
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Coefficients of Some Useful Responses

Butterworth Maximally Flat Amplitude
Response (B4)

This well-known response is characterized by [10], [18]

a; = (4+2\V2) % = 26131
a,=2+YV2=31412
a3 = a, = 2.6131

fa/fo = 1.0000

Bessel Maximally Flat Delay Response (BL4)
The normalized roots are given in [19]. They yield

a, = 320108 A, = 1.4638
a, = 439155 A, = 1.2857
ay = 3.12394 A, = 0.9759.

fa/fo = 1.5143

Chebyshev Equal-Ripple (C4) and
“Sub-Chebyshev” (SC4) Responses

These responses are both described in [14]; the C4
responses are further described in [32]. The pole loca-
tions may be derived from those of the Butterworth
response by multiplying the real part of the Butterworth
pole by a factor & which is less than unity for the C4
responses and greater than unity for the SC4 responses.
The filter-function coefficients are then given by

_k(a+2y2)%

as =

D%
1+ k2(1+7V2)
a2 _——
D%
as’ 1—k2
a; = [1 - ] (63)
D*% 2V 2

where
kt+6k2+1
D=—w—
8
For the C4 responses, the passband ripple is given by

dB ripple =
10log o [1+ K*/(64+ 28K + 80K2+ 16K3)] (64)

where

K = 1/k* — 1.

Quasi-Third-Order Butterworth Responses (QB3)

This class of response is described in [10] and [32].
In this paper, the response is varied as a function of the
parameter B given by

B = A %, (65)
The other coefficients are given by
A, = A, =0
as > 2+ V 2
ay = (2a,) %
a; = (a2 +2)/(2ay). (66)

Because the direct relationships between B and the a
coefficients are very involved, the range of responses is
computed by taking successive values of a, and then
computing a,, a;, A5, and B.

Other Possible Responses

Other fourth-order responses which can be obtained
with the vented-box system include transitional Butter-
worth—-Thompson [18], transitional Butterworth—Cheby-

shev [30], Thiele interorder [31], and degenerated
Chebyshev [11].

The degenerated Chebyshev responses of the second
kind (DT2) described by Nomura [11] look particularly
appealing for cases where a smooth bass lift (similar to
an underdamped second-order response, but with a
steeper cutoff slope) is desired. Nomura’s design param-
eters are readily convertible into those of this paper.

Computation of Basic Alignment Data

The basic alignment data are obtained by using the
coefficient—parameter relationships given by Egs. (21)—
(24). The steps are as follows.

1) For a given response and value of Q;, calculate
¢y = a0y,
¢ = a30r. (67)
2) Find the positive real root r of
rt—cyritcr—1=0. (68)
3) Then, using Eqs. 60—62 to obtain f3/f,, the align-
ment parameters are
h=r2
fs/fs = h%(f3/f0)
a=ah—h—1—(1/Q;2)(a;h*Qr—1)
QOr = hQ./(ash*:Q;,—1). (69)

For infinite O, the above expressions reduce to Thiele’s
formulas:

h=az/ay
fs/fs = h%(f3/f0)
a = a2h—h2-— 1
07 = 1/(ayaz) %. (70)

Computation of Displacement Maxima
Eq. (14) may be written in the generalized form
b152T 2+ bosTy+ 1
X(s) = 1594y 2510 71)
54Tt + a;,83T 3 + aps2T o2 + azsTy+ 1

where Ty, a;, a», and ay are given by Egs. (21)—(24) or
by the alignment specification and

by = 1/h
b, =1/(h"%Qy). (72)
The magnitude-squared form of this expression is

| X (jo)|2 =
Byt Tyt + Bow?T o2 + 1

3
ST + A108T S + ApwiTy* + Ag0?To2 + 1
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Fig. 20. Voice-coil impedance magnitude of vented-box
loudspeaker system as a function of frequency.

where the A, coefficients are given by Eq. (59) and

B, = b2 —2b,. (74)

The value of |X(jw)|n.? for any alignment is found
by differentiating Eq. (73), setting the result equal to
zero, solving for the value of 27,2, and then replacing
this solution in Eq. (73) and evaluating the expression.
There are always at least three frequencies of zero slope
for Eq. (73): zero, near f,, and above fp. For the ex-
treme C4 alignments, there is a fourth frequency, below
fp. The first of these frequencies gives unity displace-
ment; the second is not of interest because it gives a
displacement minimum. The third frequency gives the
displacement needed to evaluate the displacement-limited
power capacity for bandwidth-limited drive conditions.
The procedure is as follows.

1) For a given alignment and value of Q;, calculate
Cy, = (1/2By)(AB, + 3B,)
Cy; = (1/By)(AB,+2)
Cy, = (1/2B,) (34, + A,B, —
¢, = (1/By)(4;— By)

A3B1)

Co = (1/2By) (A5 — By). (75)
2) Find the largest positive real root G of
G5 + 614(;4 + C;;G3 + C2GZ + CIG + CO = 0. (76)

(The normalized frequency of maximum passband dis-
placement is then fy,./fo = G*%).

3) Calculate
B,G2+ B,G + 1
Gt+ A,G3+ 4,G2+ 4,G+1
The same procedure is used to determine the fre-
quency of maximum displacement below f; for the ex-
treme C4 alignments by finding the smallest nonzero
positive real root in 2). The corresponding maximum

value of the displacement function magnitude is then
determined as in 3).

| X (jo) [ max® =

(77)

APPENDIX 2
PARAMETER-IMPEDANCE RELATIONSHIPS

Determination of f;; and «

For infinite Q;, the steady-state form of Eq. (16) be-
comes

Zy(jo) =

R.+R j(‘”TS/QMS)(l _(02T1;2)
BoTEs A TR2TE + 1
+w?[(a+ 1) Tp2+ T2

T i(0Ts/Qug) (1 — w?Ty?)

This expression has minimum magnitude and zero phase
when the numerator of the second term is zero, i.e.,
when o = 1/T;. Thus for this case, the frequency far of
Fig. 20 is equal to f5. The expression also has zero phase,
with maximum magnitude, when the real part of the
denominator of the second term is zero, i.e., for

(78)

2 —
W= =

T+ (a+ D) T2 =V T+ (aF 1)2T 5+ (2a—2) T2 T2
2T 2T 2 '

(79)

Let the solution using the plus sign be wy2 and the
solution using the minus sign be ;2. Then
o+ w2 = wp?+ (a+ 1) w2 (80)

and

(wH2 - wL2)2 = wB4 + (a+ ])2ws4 + (2 — 2) wB2wsg.

(81)
Combining Eqs. (80) and (81), it can be shown that

(0 —0r?)? = (0p® T 012)? — dopey®  (82)

which simplifies to

opfor? = ogop?

or [10, eq. (105)]

(o Tty &
fB

where fg = fgp is the resonance frequency of the driver
for the particular air-load mass presented by the en-
closure.

With fy known, « can be found by rearranging Eq.
(80) into

— fH2 + fL2 - f1;2
i

Alternatively, substituting Eq. (83) into Eq. (80), it is
easily shown that [10, eq. (106)]

(fe? — 18%) (52 — f1P)

a

—1. (84)

o= (85)
fu*fi®
This expression factors into
o= (fH+fB)(fH_fB)(fB+fL)(fB_fL). (45)

fH2fL2
Approximate Determination of Q;

From Fig. 3, Z,, will be resistive when the portion
of the circuit to the right of Rpyg is resistive. The steady-
state impedance of this portion of the circuit is

(aTpQ1) [_ ‘"2TB/QL + jo(1— w2T32)]
Wt T?TR+ 1 —o?[(at+1)Tx2+ T4%]
+jo(Ty/QL) (1 — ?T4?)

Z(jo) = Rpgg,
(86)
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At a frequency of zero phase, the magnitude of Z(jw)
may be evaluated by taking the ratio of either the real
or the imaginary parts of the numerator and denominator,
because these ratios must be equal. That is, for zero
phase,

|Z(jw)| =
— W2T3/0y,
Ry (aT30) /0
Wt Tp2Tg? + 1 — o[ (a+ 1) Tp2 + T4?]
l—szBz

= Rgr(aTpQ1)

. (87)
(Tp/Q1) (1 — ?Tg?)

Setting the real and imaginary ratios equal in the
normal way leads to a very complex set of solutions for
the exact frequencies of zero phase. However, it can be
seen that the first ratio varies relatively slowly with fre-
quency near wg (as indeed does |Zyy(jw)|) and hence
can be expected to have about the same magnitude at
the frequency of zero phase oy very near to ey as it has
at wy. This gives

|Z(joar) | = | Z(jop)| = Ry, (88)

The resistive voice-coil impedance measured at fy,
defined as Ry + Ry, in Fig. 20, is thus made up of Ry
plus the parallel combination of Rgy and Rpg;. Evaluat-
ing this resistance and using Eqs. (5), (7), (8), (10),
and (11), it can be shown that

0 =£[ 1 1
g a L Ogg(ry—1) Ous :I

where 7y is (Ry + Rpy) /Ry as defined in Eq. (48) and
Fig. 20. In many cases the 1/Qg term can safely be
neglected.

Now, if the two ratios in Eq. (87) are equal at wy,
the second must give the same value as the first. This
requires that

(49)

— 2

oy ? = #QL_ (89)

Tg®—aTp?Q,2

which may be rearranged to give Eq. (50). The approxi-
mation made earlier in Eq. (88) seems justified by Eq.
(50) for Qp values as low as 5, because the difference
between f;; and fj is then at most a few percent. For
lower values of Q) (which are unusual), substantial in-
accuracy must be expected. Inaccuracy can also be con-
tributed by a significant voice-coil inductance (see [32]).

APPENDIX 3
MEASUREMENT OF ENCLOSURE LOSSES

Measurement Principle

In this method of measurement the system driver is
used as a coupling transducer between the enclosure
impedances and the electrical measuring equipment. The
driver losses are subtracted from the total measured
losses to obtain the enclosure losses. Greatest accuracy
is therefore obtained where the driver mechanical losses
are small and stable.

The method assumes that Ry remains constant with
frequency (i.e., voice-coil inductance losses are negli-
gible), that the individual enclosure circuit losses cor-
respond to Q values of about 5 or more (so that Q2
>>1), and that any variation with frequency of the
actual losses present can still be represented effectively

by a combination of the three fixed resistances R, g,
R4, and R,p of Fig. 1.

System Loss Data

From the system impedance curve, Fig. 20, find the
three frequencies f;, fi, and fy, and the ratio of the
corresponding maximum or minimum impedance to Ry,
designated ry, ry, and ry.

Using the methods of Section 7 (Part II) or [32], de-
termine the system compliance ratio «. Measure inde-
pendently the driver resonance frequency fg and the
corresponding value of Qpgy as described in [12] or [32].
The driver mounting conditions for the latter measure-
ments do not matter, because the product fyQpy which
will be used is independent of the air-load mass present.

Driver Loss Data
Let the symbol p be used to define the ratio
p = (Rpg+ Ryz)/Ry. (90)

Because Rpg is in fact a function of frequency for real
drivers, so too is p. Typically the variation is of the order
of 2 to 4 dB per octave increase with increasing
frequency.

At the resonance frequency of the driver, p is the
ratio of the maximum voice-coil impedance to Ry which
is defined as ry in [12]. The value of p for frequencies
down to f;, may be measured by weighting (mass load-
ing) the driver diaphragm and measuring the maximum
voice-coil impedance at resonance for a number of pro-
gressively lower frequencies as more and more mass is
added. A convenient nondestructive method of weighting
is to stick modeling clay or plasticene to the diaphragm
near the voice coil.

Unfortunately, there is no comparable simple way to
reduce mass or add stiffness which will raise the driver
resonance frequency without affecting losses. For sim-
plicity, it is necessary to extrapolate the low-frequency
data upward to fy. This is risky if f; is more than an
octave above fy but gives quite reasonable results for
many drivers.

Under laboratory conditions, it is possible to fabricate
a low-mass driver which is “normally” operated with a
fixed value of added mass. This mass is selected so that
the unloaded driver resonance occurs at a frequency
equal to or greater than the value of f;; for the loaded
driver in a particular enclosure. In this case the value
of p can be accurately determined for the entire re-
quired frequency range by adding and removing mass.

Measure and plot (extrapolating if necessary) the
value of p over the frequency range f;, to f;. Find the
values at fr, fy, and fy and designate these pp, py,
and PH-

These measurements should be carried out at the same
time and under the same conditions as those for the
system loss data above. The signal level should be the
same and should be within small-signal limits at all times.

Enclosure Loss Calculation

Define:
H = fy/fu
L=fy/fs

F = fy/(afsQrs)- 1)
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Calculate:

K = 1 1
L rL_l PL_l
. = 1 1
y = -
ry—1 pu—1
ky = ! ! (92)
H rH_l pH_'l
. 1
Cy = (Fky) 1
1
CH=Fk,,(H2—1)(1—E;> (93)

1 1 1
() (-5) (=)
H2L? L2 HZ
! V¢ (L2—1 —c, (==
H2L2 AT 5 HE

1 1
Ny = —C‘"<L2_Tﬁ) +C"(L2_”+CL(1—§;)

N, =Cy ( HL2—

(94)

1 1
Ny —cM( 2—5) +c,,(1-—) FCp(HE=1).

L2

Then the values of Q;, Q4, and Qp which apply at the
frequency f, are found from

0, = A/Nyg
Q4= A/N,
Qp = A/Np. (95)

Using the same data, the total enclosure loss Qp at the
frequency fy is

Qp(fy) = 1/Cy = Fky.

The approximate formula for Qp = Qy, given in Eq.
(49) differs from Eq. (96) only in that Rgg is assumed
constant, i.e., that p;; = ro. However, because py is sel-
dom very different from r, and particularly because
ry — 1 is usually much less than py, — 1, Eq. (49) pro-
vides an adequately accurate measurement of total losses
for normal evaluation purposes.

(96)
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