

Beam Steering & Shaping

dr. ir. Evert Start Senior Principle Engineer Duran Audio/JBL Pro

The Netherlands

July 2015

harman/kardon

Winfinity.

CONTENTS

1. INTRODUCTION

2. BASIC ARRAY PHYSICS

3. DIRECTIVITY CONTROL

4. CONTROLLING BASS

Prrays *must* be curved to shape the lobe...

FIR filtering to optimise the directivity of arrays is new...

 \mathfrak{C} rrays can be put anywhere, the software will do the rest...

you cannot control bass...

BASIC ARRAY PHYSICS What?

WHAT IS AN ARRAY?

A loudspeaker array is a collection of sound sources (or complete enclosures) that is assembled to achieve a coverage pattern that cannot be achieved with a single loudspeaker.

The combined array is more powerful and can have a wider or narrower beam than the individual elements Line array

BEAMFORMING

- Mechanical
 - Minimum interference
 - Beam controlled by shape of array

• Electronical

- Maximum interference
- Beam controlled by (digital) signal processing of loudspeaker signals

Beam steered/shaped column

ARRAY PHYSICS Beamforming Concepts

Mechanical beamforming

HARMAN

- Line arrays: Radiation pattern dictated by shape of array.
- Minimum interference. HF horns are designed to have minimum mutual interference at higher frequencies.
- Low driver density.
- No multi-channel signal processing.

Electronical beamforming

- Radiation pattern determined by (digital) filtering of output channels (i.e., loudspeaker signals)
- High driver density.
- Maximum interference: Deliberate, controlled interference for obtaining desired radiation pattern.

ARRAY PHYSICS Sound Waves

KEYWORDS:

HARMAN

- Sound is a wave phenomenon
 - Frequency *f*
 - Wave length λ
 - Speed of sound c (=340 m/s)

<i>f</i> [Hz]	20	50	100	200	500	1000	2000	5000	10000	20000
λ [m]	17.0	6.8	3.4	1.7	0.68	0.34	0.17	0.068	0.034	0.017

• Waves interfere

 $\lambda = -\frac{c}{c}$

Constructive

Destructive

ARRAY PHYSICS Interference

HARMAN

- A small loudspeaker (monopole) radiates sound in all directions (omni-directional sound wave).
- By combining several loudspeakers in an array, the radiation pattern becomes directional.
- In the target direction the sound waves sum, in other directions they (partially) cancel.

2 monopoles spaced at $\lambda/2$

4 monopoles spaced at $\lambda/2$

ARRAY PHYSICS Interference

4 monopoles (f=1kHz, spacing= $\lambda/2$)

Representation:

- Space-time (yz-t)
- Space-frequency (yz-f)
- Angle-frequency (rθ-f)

ARRAY PHYSICS Length and Spacing

BEHAVIOUR OF A PARALLEL-DRIVEN POINT SOURCE ARRAY

Fixed driver spacing, variable array length

Fixed array length, variable driver spacing

ARRAY PHYSICS Basic Laws

• Effect of array size and wave length:

Beam width
$$\sim \frac{\lambda}{L}$$

• Spatial sampling (i.e. driver spacing):

(Nyquist criterion)

 Note: For directional sources like waveguides this anti-aliasing criterion can be relaxed

DIRECTIVITY CONTROL

Beamforming technology

AS SHOWN, THERE IS A NEED FOR DIRECTIVITY CONTROL

Objectives:

- Consistent radiation pattern over frequency
- Uniform coverage and frequency response
- Minimize "spill" (e.g., avoid reflective surfaces or reduce outdoor noise pollution

Methods:

- Mechanical line array optimisation
- Signal processing
 - "constant- λ " design, i.e. $L_{eff} = C \cdot \lambda$
 - Beam steering
 - Beam shaping

- \rightarrow Minimum interference
- → Maximum interference

DIRECTIVITY CONTROL

Beam Steering

Mechanical aiming

Mechanical Aiming versus Electronic Steering

Electronic steering

DIRECTIVITY CONTROL Beam Steering

HARMAN

Mechanical aiming versus electronic steering

DIRECTIVITY CONTROL **Beam Steering**

Electronic steering

HARMAN

DIRECTIVITY CONTROL Some History

Early attempts to control the opening angle ("constant- λ "):

- Electrical Low-pass filter circuit
- Mid/wide band loudspeaker arrangement
- Barber pole
- Acoustic low-pass filtering

DIRECTIVITY CONTROL Some History

Electro-Voice LR-4S (1950s)

FIG. 1. Line-source loudspeaker with electrical filtering at Franklin Hall, Franklin Institute, Philadelphia, Pa.

DIRECTIVITY CONTROL Some History

UL (1950s)

HARMAN

FIG. 2. Line-source loudspeaker with omission of high frequency "whizzer" in outer loudspeakers: University loudspeaker UCS-6.

DIRECTIVITY CONTROL Some History

"Barber pole" (Philips 1958)

Fm. 3. "Barber pole" line source: Palais Chailot, Philips system.

DIRECTIVITY CONTROL Some History

FIG. 4. Section through line-nource loudspeaker (enclosure is made of 34 in plywood).

HARMAN

Fig. 5. Polar plot fine courts containing 13 4-in localitysikers, glass files:

DIRECTIVITY CONTROL Advanced techniques

1. DDC – BEAM STEERING

(Developed and introduced in the early 90-ies by Duran Audio)

2. DDS – BEAM SHAPING

(Developed and introduced in 1999)

DDC BEAM STEERING

Digital Directivity Control (DDC)

- "Beam Steering"
- Parametric beam control
- Applied in:
 - Intellivox-DC range

DDC - BEAM STEERING Transducer spacing

Frequency independent:

+

 $L_{eff}(\lambda) = const \cdot \lambda$

Logarithmic positioning:

∜

Reduction of the number of loudspeakers and signal processing for a given array length

LF Patented positioning scheme Z_{ℓ} VZ_{ρ} $Z_{\ell-1}$ HF

DDC - BEAM STEERING

Beam parameters

DDC - BEAM STEERING

Block diagram

DDC - BEAM STEERING

Example

HARMAN

DDC Steering

DDC - BEAM STEERING Typical use

[dB]

95

90

85

80

75

DDC - BEAM STEERING Features

- Simple and intuitive parametric control
 - Opening angle
 - Aiming angle
 - Focus distance
- Constant SPL over distance (up to 70m)
- Large direct-to-reverberant ratio
- High speech intelligibility
- Most suitable for flat audience areas
- Mounting height restrictions:
 - Offset between acoustic center and audience plane 0.3-0.6 m (~ 1-2 ft.)

BEYOND BEAM STEERING...

What if:

- we could not only steer but also **shape** the beam?
- we could **extend** the frequency response?
- we could control **bass**?

DDS - BEAM SHAPING The Inverse Approach

- Digital Directivity Synthesis (DDS)
- Invert the desired "illumination" of the room to the array.
- Boundary conditions:

HARMAN DDS BEAM SHAPING

Digital Directivity Synthesis (DDS)

- "Beam Shaping"
- Beam can be adapted to geometry of the room
- Applied in:
 - Intellivox-DS(X) range

DDS - BEAM SHAPING The Inverse Approach

- Digital Directivity Synthesis (DDS)
- Invert the desired "illumination" of the room to the array.
- Boundary conditions:

DDS - BEAM SHAPING

DDS Workflow FIR 1 **Design Input** Simulation **Full calculation Connect to network 3D Geometry**

DDA 20 builder

Loudspeakers

3D rendering of results Verify/modify design

Low-latency FIR design

Upload filters to unit

DDS - BEAM SHAPING Upload Process

DDS BEAMFORMING Block Diagram

DDS - BEAM SHAPING Intellivox Application Example

SWEDISH PARLIAMENT

- Fan-shaped hall
- Reflective curved back wall
- 2x Intellivox-4c-XL (predecessor of Intellivox-DS430)

Geometry

DDS INTELLIVOX Intellivox Application Example

- Swedish Parliament
 - Fan-shaped hall
 - Reflective curved back wall

dB)

-80 75

70

DDS - BEAM SHAPING

Intellivox Application Example

Desired direct SPL distribution

Weights (priority factors)

[dB]

-5

--10

--15

-20

-25

-30

DDS - BEAM SHAPING

Intellivox Application Example

Realized direct SPL distribution

DDS - BEAM SHAPING Features

- Flexible array set-up
- Tailor-made directivity pattern
 - Requires (basic) 3D geometric model of space →
 SketchUp [®] + Plugin
- Constant spectral balance for all listening positions
- Optimum direct-to-reverberant energy ratio
- Both far field and near field control
- Directivity pattern can be changed by software, i.e., without re-angling the boxes

DDS - BEAM SHAPING Mounting height vs. Coverage

Intellivox-DS430

H=2.5 m ∆z = 0.8 m

H=4.5 m ∆z = 2.8 m

DDS - BEAM SHAPING Mounting height vs. Dispersion

Intellivox-DS430

 $\Delta z = 0.8 \text{ m}$

H=4.5 m ∆z = 2.8 m

HARMAN

DDS - BEAM SHAPING Mounting height vs. D/R ratio

<D/R>= -4.6 dB

<D/R>= -7.0 dB

V=6,400 m³ RT=3 s

DDS - BEAM SHAPING Mounting height vs. Intelligibility

<STI>=0.50

<STI>=0.45

V=6,400 m³ RT=3 s

HARMAN

DDS - BEAM SHAPING Mounting height

Conclusion:

• Larger mounting height

- Larger steering angle & wider dispersion
- Lower D/R ratio
- > Poorer speech intelligibility and musical clarity

Extremely large steering angles don't make sense!

CONTROLLING BASS

1. WHAT ARE BEAM-SHAPED DIFFERENTIAL SUBWOOFER ARRAYS?

2. ACOUSTIC MODELLING BY PSM-BEM

3. VALIDATION OF PSM-BEM BY MEASUREMENTS

4. SUMMARY AND CONCLUSIONS

Normal versus cardioid bass arrays

SUBWOOFER ARRAYS "Summing"

Directivity:

HARMAN

$$Q \propto \frac{L}{\lambda}$$
 $DI = 10\log(Q)$

Gain and robustness:

$$G_{array} = 10 \log \left[\frac{P_{array}^2(f)}{\sum_{l=1}^{L} P_l^2(f)} \right]$$

HARMAN

SUBWOOFER ARRAYS "Differential"

- + "Superdirectional", i.e., high Q for small L/ $\!\lambda$
- Less robust than delay-and-sum arrays

80 Hz

BEAM-SHAPED DIFFERENTIAL SUBWOOFER ARRAYS

- Combination of delay-and-sum and differential array
- DDS-optimised
 - Requires an accurate model of each box

ACOUSTIC MODELLING OF SUB ARRAYS

Point Source Model (PSM)

- Each loudspeaker in the array is represented by a point source with a certain directivity
- Radiation into free space (free field conditions)

POINT SOURCE MODEL (PSM)

Benefits:

- Computationally efficient
- Only one directivity function for each loudspeaker type

Shortcomings:

- No LF 'coupling' between stacked subwoofers
 - In reality, sensitivity of each box depends on stack size
- No modelling of LF diffraction around array
 - In reality, directivity and F/B ratio of each box depends on stack size
- No accurate ground plane modelling (i.e., half-space) possible with simple mirror image source model

COUPLING EFFECTS ARRAY SIZE AND LOUDSPEAKER POSITION

Free field

Magnitude (6 dB/div)

COUPLING EFFECTS

Boundary plane

HARMAN HYBRID PSM-BEM MODEL

Idea:

- Each loudspeaker in the array is modelled as a directional point source
- BEM is applied to calculate directivity functions of loudspeaker facing the actual Acoustic Boundary Conditions (ABC), including half space conditions

Benefits:

- One-time only calculation of directivity library for various ABC
- Library can be easily extended
- Computationally efficient simulation

BEM CALCULATIONS

Procedure:

- Measure normal component of particle velocity in front of cone and ports of subwoofer
- Make finite boundary element model of subwoofer array
- Calculate pressure distribution on boundaries using either full-space or half-space version of Helmholtz Integral Equation (HIE)
- From the measured velocity and the calculated pressure distribution, calculate directivity balloons for active subwoofer

Set-up

))

3U1 full-space

3U1 half-space

Normal particle velocity @80 Hz

[m/s]

10

SPL @80 Hz

[dB]

Balloon @80 Hz

Free-Field

3U1 full-space

3U1 half-space

BEM CALCULATION EXAMPLE

Sensitivity

Front-to-back ratio

VALIDATION PSM-BEM MODEL

HARMAN VALIDATION PSM-BEM MODEL

MEASUREMENT RESULTS

Cardiod setting

Mean array parameters:

DI = 4.9 dB $G_{\text{array}} = 1.4 \text{ dB}$

MEASUREMENT RESULTS

Dipole setting

Mean array parameters:

DI = 5.3 dB G_{array} = -0.5 dB

HOW DOES IT WORK IN PRACTICE? DDS Geo method

HOW DOES IT WORK IN PRACTICE?

DDS Balloon method

Summary & Conclusions

- Hybrid PSM-BEM model handles
 - Full-space
 - Half-space
 - Various array lengths
- Very accurate modelling of beam-shaped differential subwoofer arrays
- Large front-to-back ratio of cardioid subwoofer arrays
- Good Robustness, i.e. array response not sensitive to small deviations in sensitivity of individual drivers